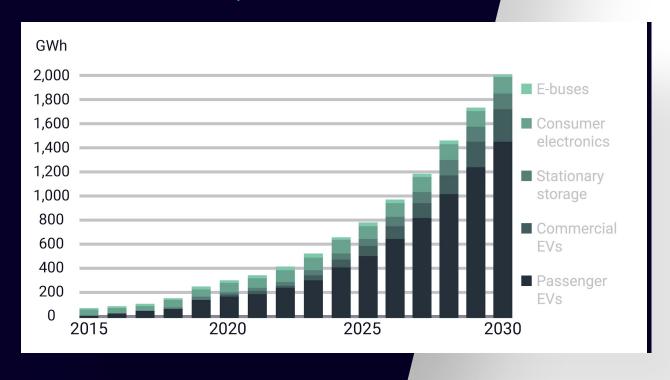
IDDIONICS

POWERING THE FUTURE

- The green revolution is happening across the economy, with no greater opportunity than EVs
- Batteries are key to unlocking this transition
- Costs will drive which battery technologies are adopted

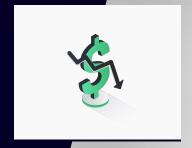

Batteries are Driving the Move to Clean Energy

That's why:

- \$9.2B in battery startup investment in 2020, up from \$4.3B in 2019
- More than 3X manufacturing capacity is in pipeline compared to today's capacity
- Major Automotive OEMs are going all electric and bringing battery tech in house

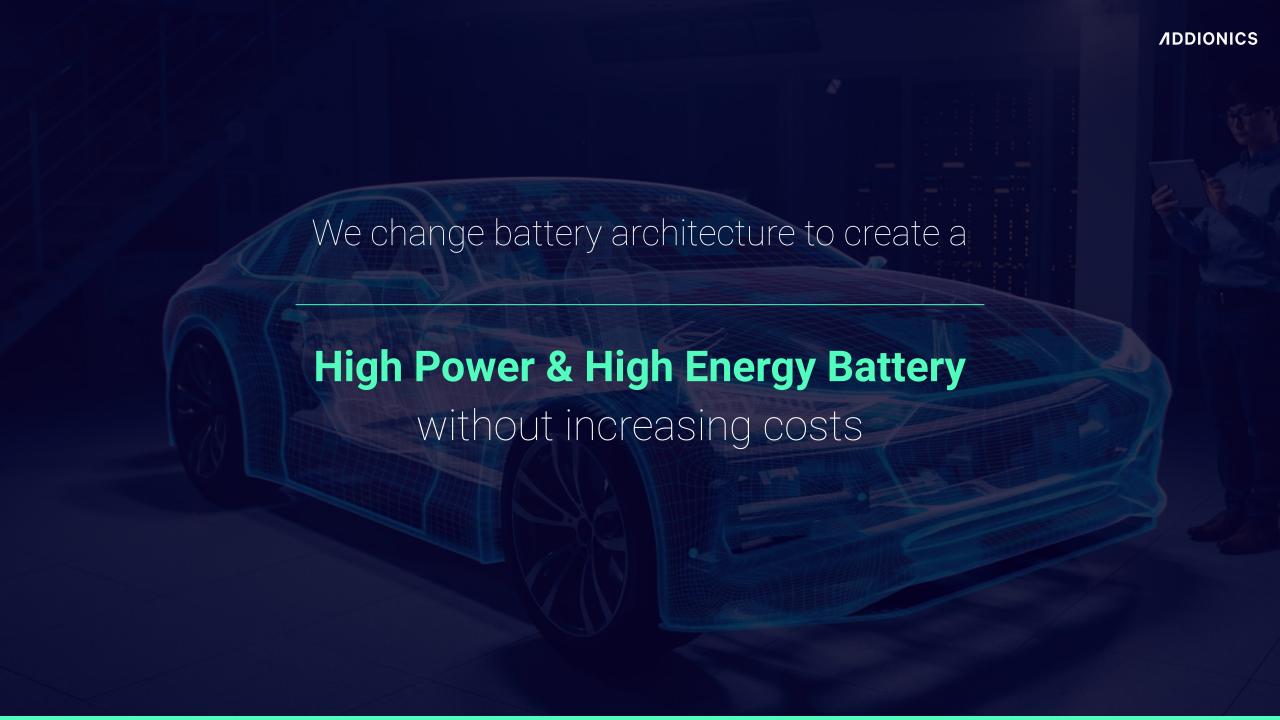
Everyone is trying to improve batteries

Annual Lithium-Ion battery demand



But, Battery Technology is Lagging Behind

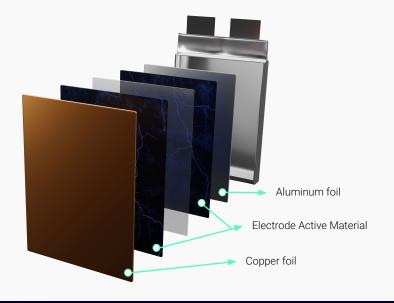
- Today's battery performance cannot meet the needs of the market and needs <u>lower costs</u>
- End users want greater energy density, but not only:
 - Mobility needs fast charging
 - High power needs faster discharge rates
 - Storage needs greater safety
 - o Incremental improvements every year
- Today, there is a big tradeoff between power to energy



Billions of dollars have been spent to create next generation batteries by focusing on **chemistry**.

Yet battery performance still lags behind

Unlocking the battery revolution requires focusing on **physics**.



Addionics Revolutionary 3D Battery Design

The architecture of commercial battery cells has been unchanged for 30 years. By redesigning the physical structure of battery cells, Addionics makes maximum impact on any battery chemistry on

Standard Battery Cells

Active material (black and purple) is coated onto 2D metal foil in anode and cathode

Addonics 3D Battery Cells

A revolution in battery cell design: architecture that integrates active material throughout cell structure

2X accessible capacity

Increased energy density by enabling greater active material loading and by accessing more capacity especially at high power rates

Delivering Better

Performance

50% reduction in charging time

50% lower internal resistance at the cell level allows for < 15 min fast charging time

Increased safety

Significantly improved thermal uniformity and higher mechanical stability

Up to 150% longer lifetime

Better structural adhesion prevents cracks & delamination and facilitates better heat dissipation along the cell

Superior Production Abilities

Chemistry agnostic

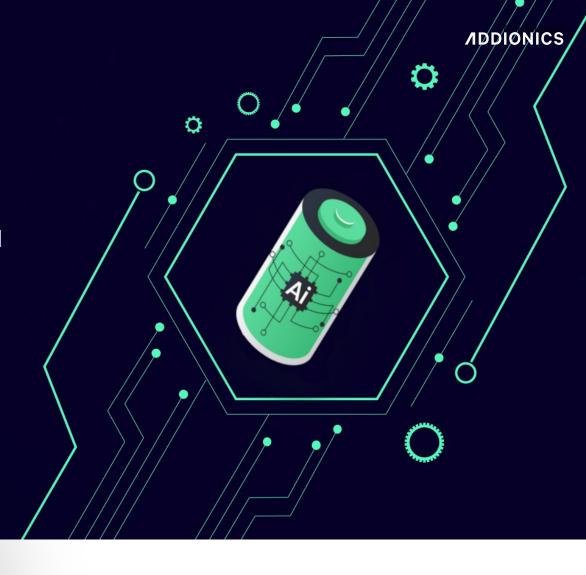
Improves performance of existing & emerging chemistries

Drop in solution

Compatible with Existing Factories and Dry/Wet process

Anode & Cathode

A rare battery technology that can improve both electrodes

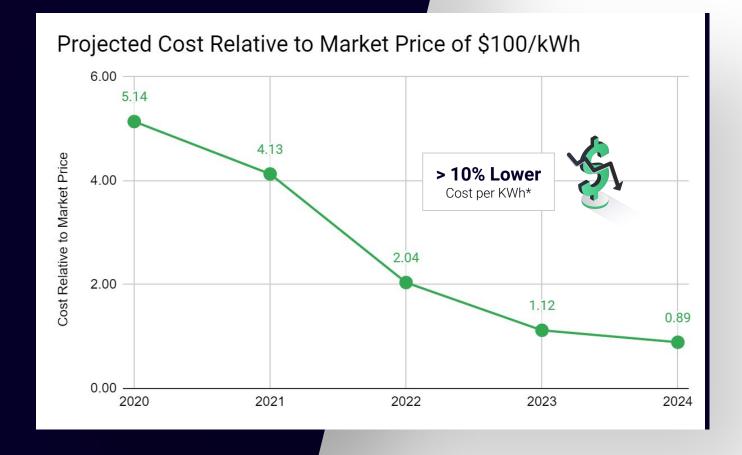

Sustainable

Less creation of waste

Software & Al Algorithms for Designing Structures

Addionics 3D manufacturing is guided by proprietary battery cell modelling software, optimizing battery structures for specific performance outcomes

Thermal Electrochemical Mechanical


Low-Cost Manufacturing Process

Our IP

 A combination of electrochemical processes to create 3D porous metal structures

Fit in Market

- Low cost, scalable, and works with existing factories
- Cost savings:
 - Metal structure
 - Coating process
 - Fewer layers

^{*} Based on the \$100 kWh automotive targeted price (<u>Bloomberg</u>)

Mobility Market Traction

Three partnerships proving Addionics technology can both enable new emerging chemistries and improve

performance of existing chemistries

Co-development with Saint Gobain

- Solid State is the next generation of high performance batteries
- Estimated 46% increase in energy density
- \$1M grant and \$500K project commitment from St Gobain

Automotive Tier-1 Supplier

- Co-developing high energy and high power silicon battery
- Advanced to 2nd stage in Q1 2021 after successful first stage
- 15% improvement in energy density

IDDIONICS

Multinational Conglomerate

- LFP is low cost, but suffers from low energy density with standard architecture
- Can keep low cost and high safety with 25% improvement in energy density
- Began manufacturing in Q1 2021

Consumer Wearables Company

- Improving existing battery with existing chemistry
- Estimated 15% increase in energy density
- Directly working with end user's primary supplier, one of the largest consumer electronics battery manufacturers in the world

High Power Consumer Product Manufacturer

IDDIONICS

- Pilot with end user, batteries for high power applications including power tools and vacuum cleaners
- Estimated increase of 20% in energy density with safety improvements

Core Team and Advisory Board

Dr Moshiel BitonCo-Founder & CEO

Dr Vladimir Yufit *Co-Founder & CTO*

Dr Farid TariqCo-Founder & CSO

Prof Herbert Kohler

TESLA

DAIMLER

Parminder Kohli

Shell

Shell Lubricants

Alon Lam

Nir Halup VP R&D

Eitan Hochster
VP BD

Gilad Fisher *Marketing Director*

Dr Belen Rodriguez Senior Electrochemist

Dr Prabhakar Patil

Pierre Labat

Tanya Waksman *HR Manager*

Dr Hicham Machrouki Modelling Engineer

Dr Stanislav DermanChemistry Dev lead

Angela Nwokeoha R&D Manager

Dr Enrique Ruiz-TrejoElectrochemical Eng.

Fird LG Novelis

Dow

THANKYOU

IDDIONICS