熵旋抑菌保鲜产业应用场景展示

山西熵旋新材料研究院有限公司

目录

- 一、技术及背景简介
- 二、熵旋微质子波技术在抑菌保鲜方面的应用
- 三、相关检测报告
- 四、需求

一、技术及背景简介

熵旋技术简介:

物理质换技术是一项通过物理场强精准改变相关物体微量分子结构的一项物理干预技术,经质换的物体材料可长久携带固化波,并可实现对物体材料承载的各类产品实现精准的二次干预,从而促使被承载物品的微量分子结构更趋优化,进一步提升被承裁物品的功能和效果。主要技术特性表现在可通过材料质换与波 频质换实现对物质体微量分子结构的物理性改变,经微质子质换的材料具有可靠的生物安全性、优良的理化性能、生物效应和活化功能效应。

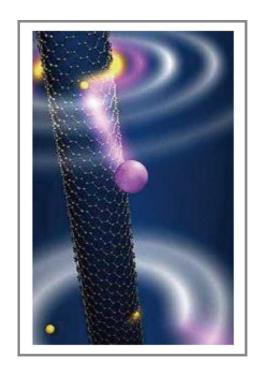
该技术可广泛适用于对各类有色金属、黑色金属、陶瓷、玻璃、塑料、纺织品、木质等材料进行微量分子结构的优化 改变,使相关材料具有功能性的实用价值。

渠玉芝教授被誉为"世界超导之父",为著名旅美华裔科学家,一直从事高能微分子热力学熵旋定律的研究,其发明及实验测试,曾获得美国史丹福研究所及全世界科学家的高度评价,为世界新能源的科学研究作出了重大贡献,发明的渠氏热超导技术为世界首创,被国外称为"渠氏理论传热技术"。上世纪 90 年代初渠玉芝教授赴美创建了美国新能源研究所,在其后的二十余年间,通过与美国斯坦福研究院(SRI)等国际知名科研机构合作,成功发明了"熵旋定律",并以该定律为基础先后研发了具有自主知识产权的"无机热超导材料技术""微质子材料技术"以及"熵旋同频共振技术"等多项前沿科技创新成果,为节能减排、再生能源的综合利用以及农业增产增收、人类生命科学的进步与发展创造了新的更加广泛的应用空间。

物理质换技术系旅美物理学家渠玉芝教授与美国 SUNNET 公司、 熵旋科技科研团队历尽三十余年研发的应用转化成果之一。 渠玉芝教授发明的核心技术涉及:无机传热技术、熵旋同频共振 技术、农业种子及灌溉水处理物理干预技术以及物理质换技术等四项 主要科研成果,其核心技术获得美国斯坦福研究院、中国科学院等多 家国际知名科研机构的系统检测与认证,相关技术性能指标具国际或行业领先水平。

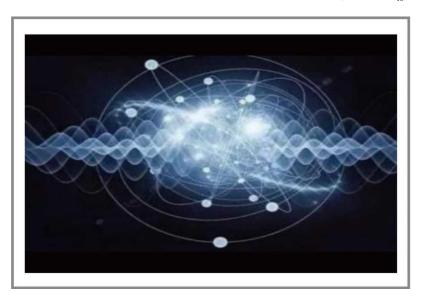
典型业绩

- ●全球首家采用"热棒技术"实现高纬度、高海拔地区冻土防治工程(中国青藏铁路、青藏公路冻土防治工程)
- ●全球首家采用传热技术实现机场道面自融雪工程(中国民航重大科技专项[MHRD20140107]:北京大兴机场道面自融雪工程)
- ●采用物理性水处理技术实现农业灌溉水质改善、增产增效的零突破
- ●全国首家成功实现 4 3 5 0 立方米冶金高炉双预热工程
- ●全国首家向英国 B P 石油公司提供传热型换热装备
- ●全球首家采用熵旋同频共振技术开发应用医疗器械以及康养装备。
- ●全球首家通过物理质换方式实现燃油品质改善


no TECHNICAL OVERVIEW

TECHNICAL OVERVIEW

)


I ESRC SUNXAN SAME FREQUENCY RESONANCE

熵旋同频共振技术

熵旋同频共振技术是将现代物理学与人体生命科学相互结合,依据人体的物质形态波 动频 率与能量的相互转换这一特性,利用较强的频率物质能量影响较弱的频率物质能量, 促使较弱 的一方频率物质能量服从较强的一方以同样的频率振动。

The SUNXAN co-frequency resonance technology refers to utilizing strong frequency matter energy to affect weak frequency matter energy through combination of modern physics with human life sciences and according to the features of mutual conversion between fluctuation frequency and energy of the physical form of human, so that the weak party* s frequency matter energy yields to the strong party and then vibrates at the same frequency.

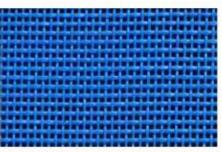
炳旋同频共振技术精准设计的嫡旋振动频率经与人体的相互作用,可不断产生同频 共振的 跳变效应,进一步定向促使人体非活性基因得到激活,使人体内的原子'分子磁 矩及原子、分 子电流磁矩不断分布、排列并重新校正平衡,相关物理过程的实现为三高、 失眠、 免疫低下等 亚健康调理开辟了又一新的有效途径。

The SUNXAN vibration frequency precisely designed according to the SUNXAN co-frequency resonance technology interacts with the human body to continuously produce the jump effect of co-frequency resonance and further promote the activation of inactive genes of the human body directionally, so that the atomic and molecular magnetic moments and magnetic moments of atomic and molecular current in the human body are continuously distributed, arranged and recalibrated until the balance is achieved, and the realization of relevant physical processes blazes a trail for the SHS conditioning of 3 highs (high blood pressure, high cholesterol and high blood sugars), insomnia, low immunity, etc.

二、熵旋微质子波技术在抑菌保鲜方面的应用

应用特性

物理抑菌 PHYSICAL BACTERIOSTASIS


生活日用品实现长效抑菌

抑菌范围:

大肠杆菌、沙门氏菌、金黄色葡萄球菌、霉菌

材料质换 AND MATERIAL REPLACEMENT

材料质子化

稳定长效固化波频, 实现波频物理性干预

- 金属材料质换
- 陶瓷材料质换
- 纸质材料质换

应用特性

果蔬保鲜 FRUIT AND VEGETABLE FRESHNESS KEEPING

有效提升果蔬储运品质

- ·锁定水分
- ・提升糖分

- ・降低酸度
- ・改变微量结构

食品提醇 ALCOHOL EXTRACTION FROM FOOD

物理质换提升食品健康功能性

有效降低

还原糖

改善品质 提高膳食纤维

优化质量

增加抗性淀粉含量

食品保鲜行业:

- 1、农产品运输方面,利用微质子波技术质换包装袋实现3-5倍保鲜,大大降低运输损耗。
- 2、冷藏保鲜食品,改变其包装袋物质特性,使其具备更长时间的保鲜效能。
- 3、使用微质子波技术可使食品保鲜在一定程度上少用或者不用食品防腐剂。
- 4、熵旋微质子波保鲜包装产品还能有有效的应用在商场、超市的食品展示和售卖中。
- 5、微质子食品保鲜袋,可有效的满足家庭一定量的食品存贮需求,减少食品存贮浪费。

保存35天的韭菜

保存35天的香菜

让时令水果延长保鲜期:

常温下放置10天的桃子

常温下放置15天的桃子

微质子波处里后的保 鲜袋包裹的桃子

面对的大产业机会:

预制菜浪潮的到来! 预制菜须解决的第一难题"食品保鲜"

熵旋微质子波技术给出解决方案:

使用微质子波技术赋能传统的保鲜袋、塑封袋,使其具备保鲜抑菌功效,在保鲜增鲜的同时大大降低过期风险。

果蔬保鲜系列

产品特点:

- 锁定水分
- 降低酸度
- 提升糖分
- 快速促熟
- 改变微量结构

使用说明:

1将水果、蔬菜、禽蛋等直接放置在本产品中即可,如需保鲜可放置在冰箱中。

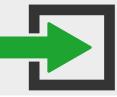
2放置的产品不低于半小时方为有效,长时间使用本品存储无不利影响。

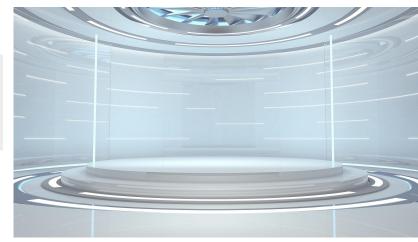
3 本品可放置在冰箱中进行冷藏保鲜。

食品提醇系列

通过物理方式,将大米和面粉在设备中进行处理,可有效降低还原糖,优化产品品质,提醇膳食纤维,更适合人体吸收。


微质子波技术已实现专业设备化:




抑菌处理方式:

微质子质换仓

针对不同的物质发 出针对性物质波

三、相关检测报告

原材料第三方检测

测试报告

No. TAOEC1903616901

日期: 2019年08月15日 第1页,共5页

山东华渠能源集团股份有限公司 山东省庆云经济开发区西环路2899号

以下测试之样品是由申请者所提供及确认: 微质子原料

SGS工作编号:

QP19-000591 - QD

型号:

Qu-WZZ-001

样品接收日期:

2019年08月12日

测试周期:

2019年08月12日 - 2019年08月15日

测试要求:

根据客户要求测试

测试方法:

请参见下一页 请参见下一页

测试结果: 结论:

基于所送样品进行的测试。镉、铅、汞、六价铬、多溴联苯(PBBs)、多溴二苯

醚(PBDEs)、邻苯二甲酸酯(如邻苯二甲酸二丁酯 (DBP)、邻苯二甲酸丁苄

题(BBP)、邻苯二甲酸二(2-乙基己基)题(DEHP)和邻苯二甲酸二异丁酯(DIBP))的测

试结果符合欧盟RoHS指令2011/65/EU 附录II 的修正指令(EU) 2015/863 的限值要

求。

通标标准技术服务 (青岛) 有限公司 授权签名

Wang Bo, Claire 王渤 批准签署人

SGS Center, No. 143, Zhuzhou Road, Laoshon District, Gingdao, China 260101 1 (86-532) 68990888 1 (86-532) 80991955

e sgs.china@sqs.com

Member of the SGS Group (SGS SA)

测试报告	No. TAOEC19036169	101	日期: 2	019年08月15日	第3页,共5
测试项目	製值	单位	MDL	001	
七溴二苯醚	-	mg/lkg	5	ND	
八溴二苯醚	2	mg/kg	5	ND	
九溴二苯醚		mg/kg	5	ND	
十溴二苯醚		mg/kg	5	ND	
邻苯二甲酸二丁酯 (DBP)	1000	mg/kg	30	ND	
邻苯二甲酸丁苄酯(BBP)	1000	mg/kg	30	ND	
邻苯二甲酸二(2-乙基己基)酯(DEHP)	1000	mg/kg	30	ND	
处学一用的一员工作/DIBD\	1000	ma/ka	30	ND	

备注:

(1)最大允许极限值引用自RoHS指令(EU) 2015/863

IEC 62321系列等同于 EN 62321系列

https://www.cenelec.eu/dyn/www/f?p=104:30:1742232870351101::::FSP_ORG_ID_+

FSP LANG ID:1258637 - 25

(2) 2021年7月22号开始, DEHP, BBP, DBP 和 DIBP的限制适用于医疗器械,包括体外医疗器械,监控仪 表,包括工业监测和控制仪器。

(3) DEHP, BBP, DBP 和 DIBP的限制不适用于玩具产品。因为No.1907/2006附录XVII第51条已对玩具产品 中的DEHP, BBP, DBP 和 DIBP含量进行了限制。

检测报告仅用于客户科研、教学、内部质量控制、产品研发等目的,仅供内部参考。

测试报告

No. TAOEC1903616901

日期: 2019年08月15日 第2页,共5页

测试结果:

测试样品描述:

样品编号 SGS样品ID 描述 TAO19-036169.001 白色粉末

备注:

(1) 1 mg/kg = 0.0001%

(2) MDL = 方法检测限

(3) ND = 未检出 (< MDL)

(4) "-" = 未规定

RoHS 指令2011/65/EU附录II的修正指令(EU) 2015/863

测试方法: 参考IEC 62321-5:2013, IEC 62321-4:2013+AMD1:2017, IEC 62321-7-2:2017, IEC 62321-6:2015和IEC 62321-8:2017. 采用ICP-OES, UV-Vis和GC-MS进行分析,

测试项目	限值	单位	MDL	001
镉(Cd)	100	mg/kg	2	ND
铅(Pb)	1000	mg/kg	2	57
汞(Hg)	1000	mg/kg	2	ND
六价铬 (Cr(VI))	1000	mg/kg	8	ND
多溴联苯之和(PBBs)	1000	mg/kg	-	ND
一溴联苯	-	mg/kg	5	ND
二溴联苯	-	mg/kg	5	ND
三溴联苯	¥	mg/kg	5	ND
四溴联苯		mg/kg	5	ND
五溴联苯	2	mg/kg	5	ND
六溴联苯		mg/kg	5	ND
七溴联苯		mg/kg	5	ND
八溴联苯		mg/kg	5	ND
九溴联苯		mg/kg	5	ND
十溴联苯		mg/kg	5	ND
多溴二苯醚之和(PBDEs)	1000	mg/kg	-	ND
一溴二苯醚		mg/kg	5	ND
二溴二苯醚		mg/kg	5	ND
三溴二苯醚		mg/kg	5	ND
四溴二苯醚		mg/kg	5	ND
五溴二苯醚		mg/kg	5	ND
六溴二苯醚		mg/kg	5	ND

SGIS Center, No. 143, Zhuzhou Road, Lanshan Dietrict, Gingsten, China 299101 1 (96-532) 68999888 1 (86-532) 80901955

Member of the SGS-Group (SGS SA)

I SGS Center, No. 143, Zhuzhou Road, Laoshan District, Gingdao, China 266101

e sgs.china@sgs.com

Member of the SGS Group (SGS SA)

酒品系列检测报告

	1	检验 · Test re					
№: (2020) BJ字WS类第2	108号	WXC WX	2100	共 2 页	第1页		
产品名称 Product Name	物理干	預白酒	商标 Mark	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-7/		
规格型号 Type	65%vol.	1. 8L/桶	样品等级 Sample Grade	3/1-	-		
生产日期。 Manu, Date\Se	日期/批号				7		
委托单位名称\地址 Unitbeingtested\Add.\Pers	联系人\电话	山东华渠台	北源集团股份有限	公司\\黄胜\15	5261043333		
生产单位名称地址 Manufacturer\Add\Perso	联系人\电话	17 HX	江苏双沟酿酒厂	7—1—1—	DON.		
样品/委托单编号 Sample No.	2020BJWS2108	检验类型 Test Type	委托送样检验	到样日期 Sample arrival date	2020-09		
样品数量 Sample Quantity	1桶	检查封样人员 Checking and sealing samples		约定完成时间 Preset finish time	2020-10		
封祥状态 Sealing State	0 +0	样品状态 Sample State	1	检验日期 Test Date	2020-10- 2020-10-		
检验依据 Test Standard(s)		7《白酒分析方法》 、GB 5009.225-20					
檢驗结论 Test Result		报告檢明	验结果。(仅对考 Si	一种	2020年10月1		
各注 Note		EXPLOY		检验检测专用	章		
批准: Approval: 职务:	resp.	甲核: 人	约里	主检: 40 Majortester:	柳		

检验结果

共 2页 第 2页

序号	BJ字WS类第2108号 检验项目	単位	技术要求	检验结果	单项评价
	DAMESTINE OF THE PARTY OF THE P		12.不安米	No hard	牛夾叶町
1	清精度(20℃)	%vol		65. 6	
2	甲醇	g/L		0.26	
3	总酸	g/L		0, 96	
4	总酯	g/L		2. 56	
5	固形物	g/L	-	0, 02	1-
6	己酸乙酯	g/L	1	0.91	
7	乳酸乙酯	g/L	3-	2.31	
8	丁酸乙酯	g/L		0.12	5
9	正丙醇	g/L	Nay!	0.71	
10	乙醛	g/L	_	0. 13	NA
11	异丁醇	g/L		0.10	
12	正丁醇	g/L		0. 22	
13	乙酸异戊酯	g/L	-53	0, 005	7/-2
19	Van XIII and XIII	234/6	以下空白	Want /	
注	No. of the last of	100		THE WATER	

饮用水系列检测报告

报告编号 (Report ID): ZX210809-050602 日期 (Date): 2021.08.21 第 1 页 共 4 页

测试报告

Test Report

报告编号 (Report ID): ZX210809-050602

样品名称(Sample Name),微质子水杯处理之后的水样

委托单位 (Client): 华华熵旋科技 (西安) 有限责任公司

测试类型 (Test Type): 委托测试

测试要求 (Test Requirement): 按照委托方要求测试

分析结果 (Test Result): 见后页

北京中科光析化工技术研究所 全国免费电话 400-635-0567 阿址: http://www.bjfses.cn 投诉电话: 010-82491398 声明,本检测结果仅对逻检桿品负责;评述仅供参考;不得部分复制本测试报告(复制无效)。请扫描全国报告的伪码查询真伪。如对检测结果有疑问。请放电咨询。

报告编号 (Report ID): ZX210809-050602 日期 (Date): 2021.08.21 第 2 页 共 4 页

研究测试报告

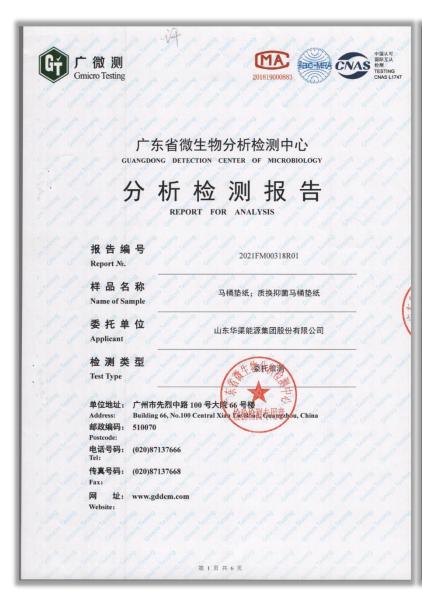
(Research Test Report)

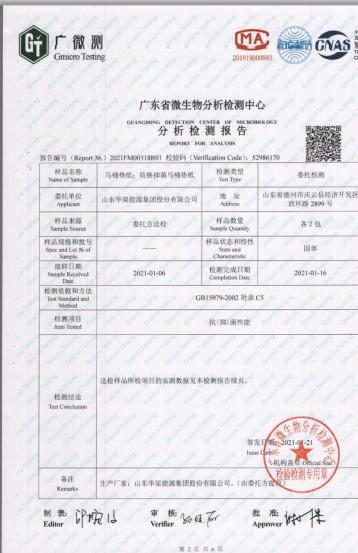
研究测试结果(Research Test Result)

SALES RESIDENCE	样品名称及编号	测试项目	测试结果	单位	测试方法
	Sample Name and NO.	Test Rem	Test Result	Unit	Test Method
	微质子水杯处理之后的水样 /ZX210809-050602	水分子团大小	40.71	Hz	¹⁷ O-NMR

以下空白

报告编号 (Report ID): ZX210809-050602 日期 (Date): 2021.08.21 第 3 页 共 4 页


报告结束


北京中科光析化工技术研究所 全国免费电话 400-635-0567 网址: http://www.bjfscs.cn 投诉电话: 010-82491398 声明,本检测结果仅对送检样品负责;评述仅供参考;不等部分复制本测试报告(复制无效),请扫接全国报告股份问查询真伪;如对检测结果有疑问,请放电各询。

声明,本检测结果仅对运检样品负责,评述仅供参考,不得部分复制本测试报告(复制无效)。诸扫描全国报告协协码查询真伪。如对检测结果书疑问。诸敌电告询。

北京中科光析化工技术研究所 全国免费电话 400-635-0567 网址: http://www.bjfxcs.cn 投资电话: 010-82491398

抑菌系列检测报告

广东省微生物分析检测中心。

GUANGDONG DETECTION CENTER OF MICROBIOLOGY 分析 检测结果

据講演 生物 字 振荡前不 振荡前 后 振荡前 景荡 h后 振荡前 景荡 h后 原体 有 有	横端的 横端	1.样品名称:马村	角整细	1000	A Section	Serie Course	100 10	A Section	Teen Teen	- Jack	1000	被证
大形件画 Escherichia 2 2 8.4×10 ⁴ 8.5×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 8.6×10 ⁴ 3.0×10 ⁴ 0 65.12 65 ATCC 25922 3 8.7×10 ⁴ 8.8×10 ⁴ 8.6×10 ⁴ 8.7×10 ⁴ 8.8×10 ⁴ 3.0×10 ⁴ 0 65.91 65 金黄色葡萄球 1 8.4×10 ⁴ 8.4×10 ⁴ 8.2×10 ⁶ 8.2×10 ⁶ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 图 2 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.1×10 ⁴ 8.4×10 ⁴ 1.4×10 ⁵ 0 83.33 83 ATCC 6538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁶ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 自色念珠菌 1 8.0×10 ⁴ 8.1×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.95 67 (Candida albicians) 3 7.7×10 ⁴ 7.8×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.6×10 ⁴ 0 67.50 67 (TCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 0 68.35 68	大勝行権 (Escherichiac oil) 2 8.4×10 ⁴ 8.5×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 8.6×10 ⁴ 3.0×10 ⁴ 0 65.12 65 ATC 25922 3 8.7×10 ⁴ 8.8×10 ⁴ 8.6×10 ⁴ 8.7×10 ⁴ 8.8×10 ⁴ 3.0×10 ⁴ 0 65.91 65 金黄色葡萄球 1 8.4×10 ⁴ 8.4×10 ⁴ 8.2×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 (Staphylococc 2 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.4×10 ⁴ 1.4×10 ⁴ 0 83.33 83 ATC 65.38 3 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 (Candida dolicons) 2 7.7×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 ATC 65.38 3 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 67.95 67. (Candida dolicons) 2 7.7×10 ⁴ 7.8×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.5×10 ⁴ 0 67.95 67. (Candida dolicons) 3 7.9×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.5×10 ⁴ 0 68.35 68.	测试微生物	序	加样片菌 落总数	不加样片 菌落总数	对照样片 菌落总数	对照样片 菌落总数	样本菌 落总数	后样本 菌落总数	样品 组抑 菌率	片组抑 菌率	放
ATCC 25922 3 8,7×10 ⁴ 8.8×10 ⁴ 8.6×10 ⁴ 8.7×10 ⁴ 8.8×10 ⁴ 3.0×10 ⁴ 0 65.91 65 金黄色葡萄球 1 8.4×10 ⁴ 8.4×10 ⁴ 8.2×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 明 2 8.3×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁵ 8.1×10 ⁵ 8.4×10 ⁴ 1.4×10 ⁵ 0 83.33 83 ATCC 6538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁴ 8.2×10 ⁶ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 自色念珠菌 1 8.0×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁶ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 自色念珠菌 2 7,7×10 ⁴ 7.8×10 ⁴ 8.0×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.95 67 (Candida albicatas) 3 7,9×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.6×10 ⁴ 0 67.50 67 (Candida albicatas) 3 7,9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 0 68.35 68	ATCC 25922 3 8,7×10 ⁴ 8,8×10 ⁴ 8,6×10 ⁴ 8,7×10 ⁴ 8,8×10 ⁴ 3,0×10 ⁴ 0 65.91 65	大肠杆菌	1	8.6×10 ⁴	8.7×10 ⁴	8.4×10 ⁴	8.4×10 ⁴	8.8×10 ⁴	3.1×10 ⁴	0	64.77	64.
XICC 25922 3 8.7×10 ⁴ 8.8×10 ⁴ 8.6×10 ⁴ 8.7×10 ⁴ 8.8×10 ⁴ 3.0×10 ⁴ 0 65.91 65 金黄色葡萄球 自 8.4×10 ⁴ 8.4×10 ⁴ 8.2×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 Staphylococc us aureus) 3 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.1×10 ⁴ 8.4×10 ⁴ 1.4×10 ⁴ 0 83.33 83 ATCC 6338 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 自色念珠稿 1 8.0×10 ⁴ 8.1×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.90 67 XTCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.6×10 ⁴ 0 67.50 67 XTCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 0 68.35 68	ATCC 25922 3 8.7×10 ⁴ 8.8×10 ⁴ 8.6×10 ⁴ 8.7×10 ⁴ 8.8×10 ⁴ 3.0×10 ⁴ 0 65.91 65 金黄色葡萄球 1 8.4×10 ⁴ 8.4×10 ⁴ 8.2×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 (Staphylococ us aureus) ATCC 6538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.1×10 ⁴ 8.3×10 ⁴ 1.4×10 ⁴ 0 83.33 83 (白色念珠菌 (Candida ablicans) 2 7.7×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.50 67. ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 0 68.35 68.		2	8.4×10 ⁴	8.5×10 ⁴	8.2×10 ⁴	8.3×10 ⁴	8.6×10 ⁴	3.0×10 ⁴	0	65.12	65.
第 2 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.1×10 ⁴ 8.4×10 ⁴ 1.4×10 ⁴ 0 83.33 83 83 83 83 83 83 83 83 83 83 83 83 8	Staphylococc 2 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.1×10 ⁴ 8.4×10 ⁴ 1.4×10 ⁴ 0 83.33 83 ATC 6538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 6色念珠菌 1 8.0×10 ⁴ 8.1×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.50 67 67.0 6		3	8,7×10 ⁴	8.8×10 ⁴	8.6×10 ⁴	8.7×10 ⁴	8.8×10 ⁴	3.0×10 ⁴	0	65.91	65.
Staphylococc 2 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁸ 8.1×10 ⁸ 8.4×10 ⁴ 1.4×10 ⁴ 0 8.3.33 83 83 83 83 83 83	(Staphylococc us aurus) ATCC 538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.1×10 ⁴ 8.1×10 ⁴ 8.4×10 ⁴ 1.4×10 ⁴ 0 8.3.33 83 ATCC 5538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 白色全珠菌 1 8.0×10 ⁴ 8.1×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 2.5×10 ⁴ 0 67.95 67. (Candida albicans) ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 68.35 68.		1	8.4×10 ⁴	8.4×10 ⁴	8.2×10 ⁴	8.2×10 ⁴	8.3×10 ⁴	1.3×10 ⁴	0	84.33	84.
ATCC 6538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁵ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 白色全球菌 1 8.0×10 ⁴ 8.1×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.95 67 (Condida albicans) 2 7.7×10 ⁴ 7.8×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.6×10 ⁴ 0 67.50 67 NTCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 2.5×10 ⁴ 0 68.35 68	ATCC 5538 3 8.3×10 ⁴ 8.3×10 ⁴ 8.2×10 ⁴ 8.3×10 ⁴ 8.3×10 ⁴ 1.3×10 ⁴ 0 84.33 84 白色会珠菌 1 8.0×10 ⁴ 8.1×10 ⁴ 7.9×10 ⁴ 7.9×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 67.95 67 (Candida albicans) ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 2.5×10 ⁴ 0 68.35 68	(Staphylococc	2	8.3×10 ⁴	8.3×10 ⁴	8.1×10 ⁴	8.1×10 ⁴	8.4×10 ⁴	1.4×10 ⁴	0	83.33	83.
$\frac{100.2848}{(Condida} = \frac{2}{7.7 \times 10^4} \frac{7.8 \times 10^4}{7.8 \times 10^4} \frac{8.0 \times 10^4}{8.0 \times 10^4} \frac{8.0 \times 10^4}{8.0 \times 10^4} \frac{2.6 \times 10^4}{0.68.35} \frac{0}{67.50} \frac{67}{67.50}$ $\frac{100.27}{4.00} \frac{100.27}{4.00} 1$	日記念珠陶 (Candida albicans) ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.6×10 ⁴ 0 67.50 67.		3	8.3×10 ⁴	8.3×10 ⁴	8.2×10 ⁴	8.3×10 ⁴	8.3×10 ⁴	1.3×10 ⁴	0	84.33	84.
\(\text{Candida} \) albicans \(2 \) 7.7×10 ⁴ \ 7.8×10 ⁴ \ 8.0×10 ⁴ \ 8.0×10 ⁴ \ 8.0×10 ⁴ \ 8.0×10 ⁴ \ 2.6×10 ⁴ \ 0 \ 67.50 \ 67.810 ⁴ \ 7.8×10 ⁴ \ 7.8×	(Candida albicans) 2 7.7×10 ⁴ 7.8×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 8.0×10 ⁴ 2.6×10 ⁴ 0 67.50 67. ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 2.5×10 ⁴ 0 68.35 68.	日色念珠菌 (Candida albicans)	Je	8.0×10 ⁴	8.1×10 ⁴	7.9×10 ⁴	7.9×10 ⁴	7.8×10 ⁴	2.5×10 ⁴	0	67.95	67.
ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 2.5×10 ⁴ 0 68.35 68	ATCC 10231 3 7.9×10 ⁴ 8.0×10 ⁴ 7.8×10 ⁴ 7.8×10 ⁴ 7.9×10 ⁴ 2.5×10 ⁴ 0 68.35 68.		2	7.7×10 ⁴	7.8×10 ⁴	8.0×10 ⁴	8.0×10 ⁴	8.0×10 ⁴	2.6×10 ⁴	0	67.50	67.
(接下页) (接下页)			3	7.9×10 ⁴	8.0×10 ⁴	7.8×10 ⁴	7.8×10 ⁴	7.9×10 ⁴	2.5×10 ⁴	0	68.35	68.
		albicans)	G	Co.	S (S	7.8×10 ⁴	7.8×10 ⁴	9	G G	Go	- 0	30

h注 marks

标准要求:被试样片组抑菌率与对照样片组抑菌率差值>26%,产品具有抗菌效果。

第 3 页 共 6 页

食品质换系列检测报告

检测报告

(Test Report)

No. A4B722031A4F1064591

样品名称

(Sample Description)

测试组熵旋稻花香 2#

委托单位 (Applicant)

山东华渠能源集团股份有限公司

检测结果

(Test Results)

No. A4B722031A4F1064591

第 1 页, 共 2 页 (page 1 of 2)

样品名称 (Sample Description)	测试组熵旋稻花香 2#	样品規格 (Sample Specification)			
委托单位 (Applicant)	山东华渠能源集团股份有 限公司	商标 (Trade Mark)			
到样日期 (Received Date)	2021-07-22	生产日期或批号 (Manufacturing Date or Lot No.)			
检测日期 (Test Date)	2021-07-22~2021-07-31	样品等级 (Sample Grade)	-		
样品状态 (Sample Status)	固态	检测类别 (Test Type)	委托检测		
检测项目 (Test Items)	见下页	检測环境 (Test Environment)	符合要求		
检测方法 (Test Methods)	见下页				
所用主要仪器 (Main Instruments)	电膨耦合等离子体发射光谱	仪、分析天平等			
备注 (Note)					
	编制人 (Edited by)		王好		
PONY专用的	审核人 (Checked by)		土英		
(Special Stamp of PONY)	批准人 (Approved by)		野生年		
003	签发日期 (Issued Date)		2021年07月31日		

© Hotline 400-819-5688 www.ponytest.com 育岛潜尼测试有限公司 公司地址:青岛市亳山区企水路 36 号

电话: 0532-88706866 传真: 0532-88706877

检测结果

(Test Results)

No. A4B7	22031A4F1064591		第	2 页, 共 2 页 (page 2 of 2)
序号 (S/N)	检测项目 (Test Item)	单位 (Unit)	检测结果 (Test Result)	检测方法 (Test Method)
1	蛋白质	g/100g	6.17	GB 5009.5-2016 第一法
2	脂肪	g/100g	0.8	GB 5009.6-2016 第二法
3	膳食纤维	g/100g	3.02	GB 5009.88-2014
4	还原糖(以葡萄糖计)	g/100g	0.31	GB 5009.7-2016 第一法
5	能量	kJ/100g	1461	GB 28050-2011
6	碳水化合物	g/100g	76.6	GB 28050-2011
7	49	mg/kg	未检出 (<10)	GB 5009.91-2017 第三次

营养秘密制作规定。本页纸单不能直接代替油拌品产品产包填印刷的营养机密补次,有关种品产品分包装料等的"营养成分表"中的企量和有标成价 创意应提升,学体大小、特别程序、NRV与数值、标签格式等,请查托申包制价到按照国家标准和规范要求申请得从,本册也不对其存在的可靠性帮

> ——以下空白— (End of Report)

C Hotline 400-819-5688 www.ponytest.com 育岛衛尼斯试有限公司 公司地址,青岛市崂山区全水路36号

电话: 0532-88706866 他第一0532-68706877

材料质换系列检测报告

检验报告

TEST REPORT

样品名称:	VZ质换波膜汽油

生产单位: /

委托单位: 山东华渠能海集团股份有限公司

检验类别: 委托

国家石油化工产品质量监督检验中心(山东)

National Supervision and Impaction Center for Patrology and Chemical Burdest Quality (Shandona)

(山东省产品质量检验研究院)

Na: QT0503900-2020

国家石油化工产品质量监督检验中心(山东)

National Supervision and Inspection Center for Petroleum and Chemical Product Quality (Shandong)

检验报告

Test Report

共2页 第1页 样品名称 检验类别 VZ质换波膜汽油 委托单位 山东华渠能源集团股份有限公司 92号 Model, Type Client 样品等级 生产单位 Grade 委托单位地址 山东庆云县西环路2899号 抽样地点 送样人员 武治林 抽样基数 2020-12-03 Sample Batch Receipt Date 样品数量 生产日期 Sample Quantity Producing Date 样品特性和状态 样品批号 液体, 瓶装 Sample Description Batch No. 检验环境 检验日期 温度; (21~25) ℃: 湿度: /%RH Environmental for Tes 检验依据 SH/T 0689-2000, GB/T 8019-2008 判定依据 Decision Standard 检验要求 硫含量、胶质含量 检验结论 不作结论。 Test Conclusion 1、本报告含封面及封三,符号"/"表示该项无内容。 2、检验地址:山东省济南市山大北路81号。 备注

Na: QT0503900-2020

国家石油化工产品质量监督检验中心(山东)

检验报告(续页)

共2页 第2页

序号		检验项目 単		技术要求	检验结果	单项判定
ş	股质含	未洗胶质含量(加入 清净剂前)	ng/100nl.	1	5.5	5
I.		密剂洗胶质含量	ng/100mL	97	1,5	.5
2	統合量		mg/kg	9	45	8 7
备注	1				7.5	

以下空白

四、需求

汇聚实力推动以核心技术和专业设备的商业应用推广

主要合作产业包括:

1、预制菜产业 2、食品包装产业 3、冷链及供应链产业 4、生鲜食品商超

推广模式:

- 1、为大型冷链和民生保供企业提供一揽子解决方案。
- 2、为商超零售企业提供抑菌保鲜产品。
- 3、在社区及合作方场景建立抑菌保鲜保供服务中心。

融资需求:

1、融资计划:5000万元 释放15%股权。

2、使用计划:联合江南大学建设1个实验室、联合舌尖英雄预制菜赋能5000家线下门店等

盈利模式:

- 1、微质子波抑菌处理服务费。
- 2、设备经营性租赁收取租赁费。
- 3、为大企业定制化服务。

感谢聆听!