

高性能金属粉末材料及增材制造应用

2022.10.28

中机新材料研究院 (郑州) 有限公司

中机新材隶属于国务院国资委直属的大型科技型中央企业——中国机械总院集团,项目总投资2亿元。研究院依托国家轻量化材料成形技术及装备创新中心、先进成形技术及装备国家重点实验室最新技术成果,开展成果转移转化。

研究院位于郑州高新区,围绕增材制造用高性能金属粉末材料、高品质粉末冶金材料、超高速激光熔覆、工业级金属3D打印等方向开展专用材料、工艺、装备研发及全流程解决方案。

核心技术团队拥有中国工程院院士1人,国务院特贴专家2人,80%以上拥有硕士、博士学位,70%以上拥有高级职称,技术成果先后获国家科技进步二等奖、中国机械工业科学技术进步一等奖、中国专利金奖、中国专利银奖等。

一、公司经营布局

2 亿元

项目总投资

8000 m²

科研生产、办公面积

23 台

重要生产科研设备

5 ↑

专业实验室

30+项

知识产权

89 名

员工

★ 三、公司核心团队

四、公司荣誉奖励

北京市科学技术奖科学技术进步奖证书

为表彰北京市科学技术奖获得者, 特颁发此证书。

项目名称: 增材制造用高性能金属粉末制备关键技

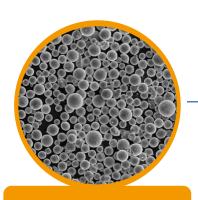
术及其应用

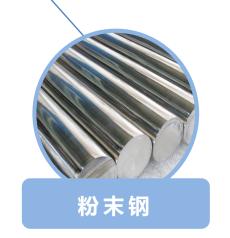
奖励等级: 二等奖

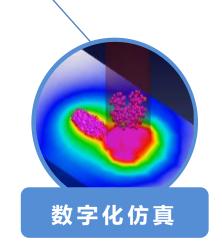
获 奖 者:北京机科国创轻量化科学研究院有限

公司

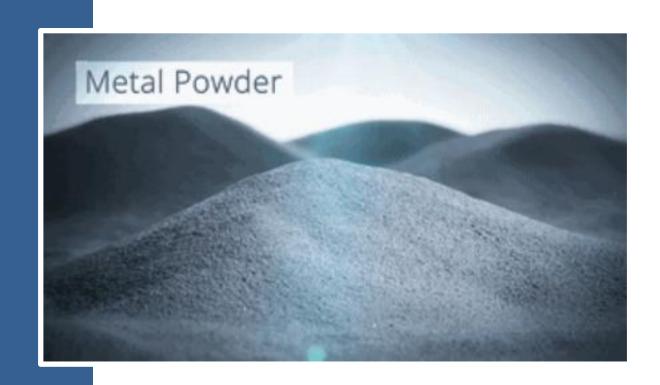
No.2019-J03-2-01-D01




五、主营产品及服务



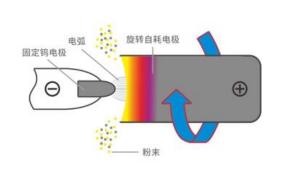
金属粉末材料



业务一 高性能金属粉末材料 产品

主要面向3D打印、激光熔覆、粉末冶金等多种工艺,开展增材制造专用金属粉末材料研发、测试及应用性能验证,为增材制造行业提供高品质金属粉末原材料。




中机新材高性能粉末制备技术

利用真空感应气雾化制粉、等离子旋转电极雾化制粉两条技术路线, 3D打印用金属粉末成粉率达50%-70%,达到国际领先水平。

所制备的粉末球形度高、氧含量低,粉末力度均匀,具有良好的流 动性以及较高的松装密度和振实密度。

可生产不锈钢、工模具钢、高温合金、钛合金等系列化金属粉末制品。年产200吨铁基、镍基、钴基金属粉末材料产品,100吨钛合金粉末产品。

250kg级VIGA型 真空气雾化制粉设备

PREP-30000型 等离子旋转电极雾化制粉设备

∠ VIGA真空气雾化金属粉末制备技术

基础 理论 喷嘴流道 设计方程

气液两相 雾化机理

关键 技术 特征线方法 气流道型面 构建 大容量高效 率连续雾化 技术

高速射流高 效率雾化 技术

依托项目

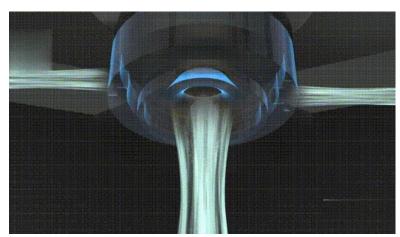
国家04科技重大专项、重点研发计划、国家智能制造专项、中德战略性国际科技创新专项 (2018ZX04028001-005、2016YFB0300404、2018智能制造新模式应用, 2016YFE0206000)

原创一发明

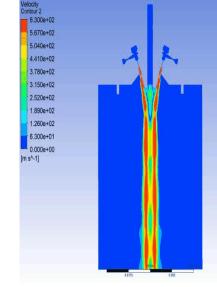
2022年第二十三届中国专利金奖

一种新型紧耦合气雾化喷嘴 ZL201911323841.5

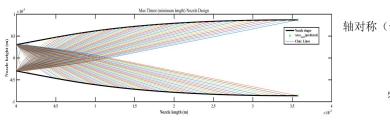
创新喷嘴设计理论及方法


突破增材制造领域"卡脖子"困境

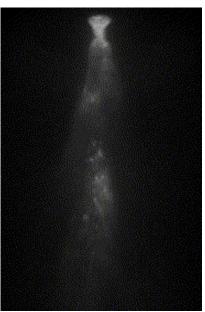
制备效率控制

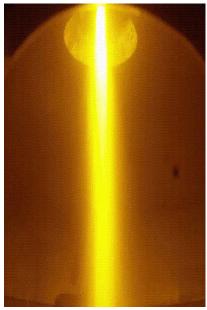

粉末形貌控制

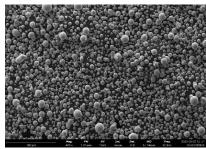
成粉率控制

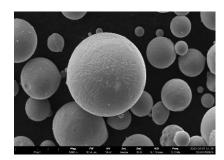

▲ VIGA真空气雾化金属粉末制备技术——成粉率控制

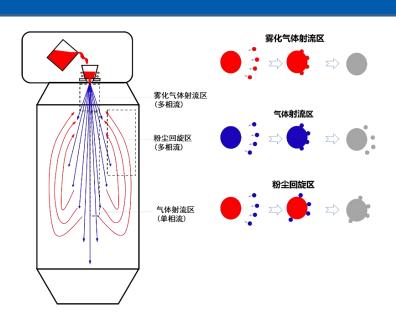

- 基于气动力学理论,采用特征线方法,从 三维轴对称角度构建特征线方程,精准迭 代求解气流道型面。
- 基于气-液两相流雾化机理, 首次提出新型双喷嘴结构及雾化理论, 实现制备合金粉末的成粉率大幅度提高。3D打印用金属粉末成分效率达到50%-70%, 达到国际领先水平。

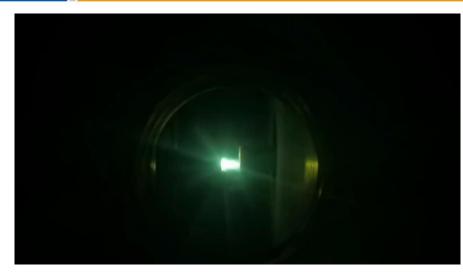

轴对称
$$(u^2 - a^2)$$
 $u_x - (v^2 - a^2)v_y + 2uvu_y - \frac{a^2v}{y}$
无旋条件 $u_x - v_y = 0$
其中音速 $a = a(u, v)$
特征线方程 $\left(\frac{dy}{dx}\right)_{\pm} = \lambda_{\pm} = \tan(\theta \pm \alpha)$

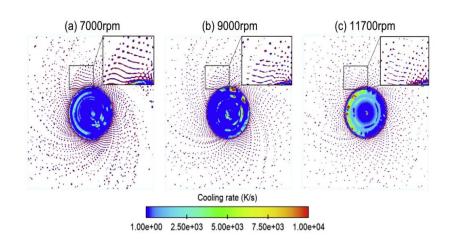

相容性方程
$$(u^2 - a^2)du_{\pm} + [2uv - (u^2 - a^2)\lambda_{\pm}]dv_{\pm} - \frac{a^2}{y}$$

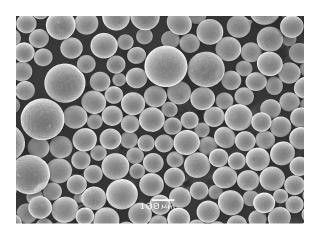

▲ VIGA真空气雾化金属粉末制备技术——粉末形貌控制




- 基于紧耦合喷嘴两相流雾化理论,首次提出新型 双喷嘴结构,<mark>抑制雾化炉体粉尘回旋区碰撞行为</mark> , 达到高球形度合金粉末的制备。
- 首次采用喷嘴底面倾斜角度控制激波射流膨胀, 实现对喷嘴雾化合金粉末形貌的控制。






△ 等离子旋转电极金属粉末制备技术

等离子旋转电极 (PREP)

- > 突破了大功率等离子枪系统,实现了高效连续生产。
- 》解决了高速驱动及动平衡调教,实现了最高 30000rpm高转速。
- ▶ 通过制备工艺仿真模拟,在高转速下实现SLM用高温 合金粉末成粉率超过50%,LMD用钛合金粉末成粉率 超过60%。

同轴送粉用钛合金粉末

Part 2 3D打印用金属粉末材料性能介绍

高性能金属粉末材料产品

> 3D打印用高温合金粉末

性能: 具有较高的高温强度, 良好的抗氧化和抗腐蚀性能, 良好的疲劳性能、断裂韧性等综合性能。

应用: 广泛地用来制造航空喷气发动机、各种工业燃气轮机热端部件。

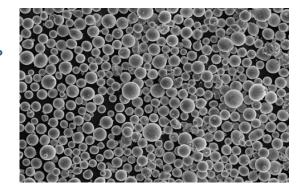
主要牌号: GH3536(HastelloyX)、GH3625(Inconel625)、GH4099(GH99)、

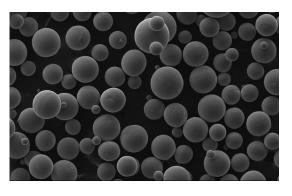
GH4169(Inconel718)、GH5188(Hayness188)等

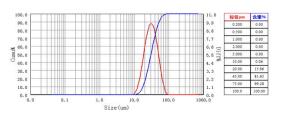
> 3D打印用铁基金属粉末

性能:具有良好的强度、耐腐蚀性和硬度,具有加工性能好,韧性高的特点

应用: 广泛应用在汽车工业、航天涡轮、食品化工和消费品行业


主要牌号: 316L、304、17-4PH、1.2709、CX、M2、CAM-J55


> 3D打印用钛基金属粉末


性能: 质量轻、强度高、耐蚀性好、耐热性高、低温性能好、生物相容性好

应用:航空航天、医疗、船舶制造等多个领域。

主要牌号: TC4、TA15、TA1、TC11、TC18、TA18、Ti65等

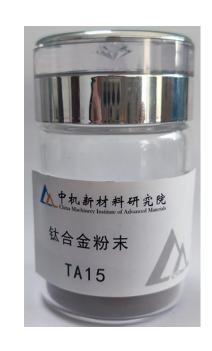
GH4169高温合金粉末

- 1、性能: GH4169高温合金是Ni-Cr-Fe基沉淀硬化型变形高温合金,具有良好的抗氧化、抗蠕变、抗腐蚀能力和良好的疲劳特性。尤其在650℃高温下,其力学性能具有很好的稳定性,能够在600~1200℃下承受一定的工作压力
- 2、粉末特性:球形度好、氧含量低、粒度分布均匀,批次稳定性高、具有良好的流动性以及较高的松装密度和振实密度。
- 3、合金应用:广泛地用于制作航空航天、核能、石化工业中的工作叶片、导向叶片、涡轮 盘和燃烧室等多种零部件。
 - 4、相近牌号:Inconel718(美)、NC19FeNb(法)

高温合金粉末牌号		化学成分(Wt%)Chemical Composition														熔覆硬度(HRC)		
四,血口亚切八叶 7	Ni	C		Si	Mn	Cr	Мо		Cu	Ti	Со	Al	Al B Nb		Nb	Fe		
GH4169	50.0-55.0) ≤0	.08	≤0.35	≤0.35	17.0-21.0	2.8-3	3.3 ≤	€0.3	0.65-1.15	≤1.0	0.2-0.8	-	4	.75-5.5	Bal.	16-19	
	粒径分布 (μm)				松装密度Apparent 振实密度Tap Density(g/cm³)		流动性FlowRate(s /50g)		含氧量 conter		含氮量N conter	Nitrogen nt (%)		:Hydrogen ent (%)	TAIN 中Dagrage of			
范围Scope		15-5	3µm		最小Min	最大Max	最小Min	最大Max	最小 Min	最大Max	最小Min	最大Max	最小Min	最大Max	最小 Min	最大Max	球形度Degree of spherical	
	D10	D50	D90	D95	4.12	4.70	-	-	-	30	-	0.05	-	0.04	-	0.05		
测量值Test Value	17.30	30.04	49.08	55.55	4.2	25	5.	09	1	.9.3	0.0	12	0.0	004	0	.0003	0.893	

1.2709工模具钢粉末

- 1、性能: 1.2709是一种低碳马氏体时效钢,具有较高的强度和硬度(抗拉强度,表面硬度 50~54HRC),兼具良好的韧性和塑性,经热处理后硬度可以最大达到54HRC,并且具有优异的可抛光性。
- 2、粉末特性:球形度好、氧含量低、粒度分布均匀,批次稳定性高、具有良好的流动性以及较高的松装密度和振实密度。
- 3、合金应用:广泛应用于航空、航天、模具等工业领域,是制造航空航天和工业装备的一种关键材料,主要用作制造导弹壳体、铀同位素离心分离机高速转筒等高精密承重零件
 - 4、相近牌号: 18Ni300、MS1

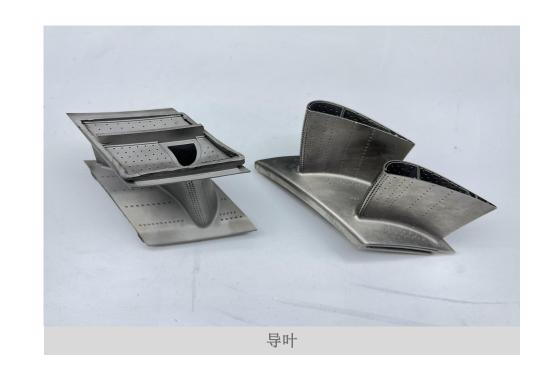


铁基合金粉末牌号		化学成分(Wt%)Chemical Composition													
以在日本初小叶 7	С	Mn		Si	Ni	Cr		Мо		Со	W	V		Cu	Fe
1. 2709	≤0.3	≤0.1	.5	≤0.1	17.0-19.0	≤0.25		4.5-5.5	8	3.5-10.0	-	-		≤0.5	Bal.
	粒径分布 (μm)				松装密度Apparent Density(g/cm³)		流动性	流动性FlowRate(s /50g)		含氧量Oxygen content(%)		含氮量Nitrogen conter (%)		nt 球形度Degree of spherical	
范围Scope	15-53μm				最小Min	最大Max	最小№	fin 最大M	lax	最小Min	最大Max	最小Min	最大Max	最小Min	最大Max
	D10	D50	D90	D95	4. 14	4.70	-	30		-	0.03	-	0.03	0.85	-
测量值Test Value	17. 09 31. 37 55. 03 64. 09		4. 23		22. 7			0. 020		0.002		0	. 89		

TA15钛合金粉末

- 1、性能: TA15属于高A1当量的近 α 型钛合金,既具有 α 型钛合金良好的热强性和可焊性,又具有接近于 α + β 型钛合金的工艺塑性。TA15拥有比TC4更高的室温及高温强度、断裂韧性、疲劳极限、抗应力、抗腐蚀能力和焊接性能,但工艺塑性稍低于TC4。
- 2、粉末特性:球形度好、氧含量低、粒度分布均匀,批次稳定性高、具有良好的流动性以及较高的松装密度和振实密度。
 - 3、合金应用: 主要制造500℃以下长时间工作的飞机、发动机零件和焊接承力零部件。
 - 4、相近牌号: BT-20 (俄罗斯)

钛基合金粉末牌					化学成分(Wt%)Chemical Composition									
号	С	Ni	Cr	Мо	W	V	Mn	Si	Zr	Cu	Со	Fe	Ti	Al
TA15	0.1	-	-	0.5-2.0	-	0.8-2.5	-	0.15	1.5-2.5	-	-	0.25	Bal.	5.5-7.0
	粒径分布 (μm)			松装密度Apparent Density(g/cm³) 流动性FlowRate(s/50g		Rate(s /50g)	含氧量0xygen content (%)		含氮量Nitrogen content (%)		含氢量Hydrogen content(%)		球形度 Degree of	
范围Scope		60-200目		最小Min	最大Max	最小Min	最大Max	最小Min	最大Max	最小Min	最大Max	最小Min	最大Max	spherical
	60-150目 (250- 106µm)	150目-200目 (106-75μm)	200目筛下 (< 75μm)	-	-	-	35	0.08	0.13	-	0.03	-	0.006	
测量值Test Value	85. 9	11. 3	2. 3	2.	46	31	. 7	0.	08	0.0	005	0.0	002	0. 92


LiM-X260A设备打印 的GH4169零件

	金相	热处理状态	测试温度	抗拉强度,MPa	Rp0.2, MPa	断后伸长率,%	断面收缩率
性能标准	光学显微镜: 50倍放大倍数, 每个视场中尺寸大于30um的气孔或未熔合不超过3个。	固溶时效	室温	≥1280	≥1030	≥12	≥15
检测结果	光学显微镜:50倍放大倍数,未见未熔 合,尺寸>30um的气孔<3个	固溶时效	室温	1401	1235	22.5	23.0
	取样方向		测试温度	抗拉强度,MPa	Rp0.2, MPa	断后伸长率,%	断面收缩率
性能标准	取样方向		测试温度 650°	抗拉强度,MPa ≥1000	-	断后伸长率, % ≥12	断面收缩率
性能标准					MPa		

LiM-X260A设备打印 的GH3536零件

	金相	热处理状态	测试温度	抗拉强度,MPa	Rp0.2, MPa	断后伸长率,%
性能标准	光学显微镜: 50倍放大倍数, 每个视场中尺寸大于30um的气孔或未熔合不超过3个。	固溶时效	室温	≥690	≥275	≥30
检测结果	光学显微镜:50倍放大倍数,未见未熔合, 尺寸>30um的气孔<3个	固溶时效	室温	816	593	33.0

业务二 粉末钢产品

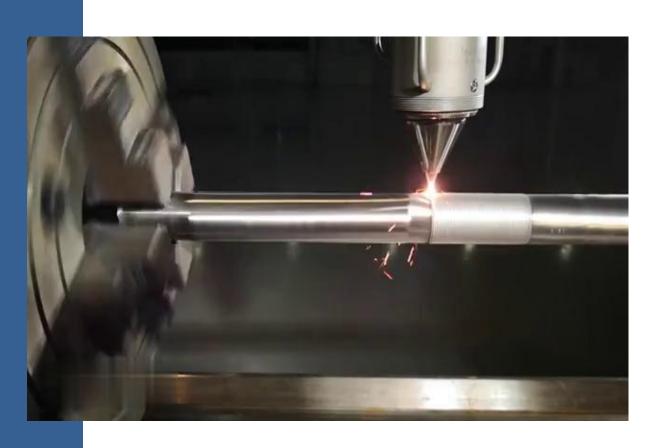
开展粉末制备、热等静压成形、锻造及热处理等全流程研发及生产,研发出多种达到国际先进水平的粉末钢产品,并已在刀具和多种模具领域进行了产业化应用。

/ 粉末钢产品——产品列明

	CAM牌号	欧美牌号	最高硬度(HRC)		
	CAM-D2	D2	60		
粉末合金钢	CAM-D10V	CPM10V	65		
	CAM-D440	ELMAX/APZ10	58		
	CAM-M2	EM2/S600	62		
	CAM-M35	EM35	65		
	CAM-M42	EM42	67		
	CAM-T15	-	65		
	CAM-D23	ASP2023/PM23	66		
粉末高速钢	CAM-D30	ASP2030/PM30	67		
	CAM-D53	ASP2053	65		
	CAM-D60	ASP2060	69		
	CAM-D290	S290	70		
	CAM-D390	S390	69		
	CAM-D590	S590	67		

粉末钢材料产品

依托科研成果,研发了PM23、PM30、PM60、PM X818等多品种的粉末冶金工模具钢产品,应用于冷作工具、挤压模具、IC封装模具等多个领域主要应用领域,如整体孔式双联滚刀、超高速干切插齿刀、高精度车齿刀、精冲模、压铸模镶块、注塑模镶块等。

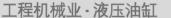


业务三 超高速激光熔覆服务

针对煤机、汽车、石油、工程机械等领域大型轴类件耐磨耐蚀涂层制备需求,开展超高速激光熔覆加工技术及装备研发,形成了专用粉末材料—核心关键部件—成套装备集成—工艺技术开发的完善技术体系替代电镀铬、热喷涂等污染工艺,实现绿色制造工艺替代。

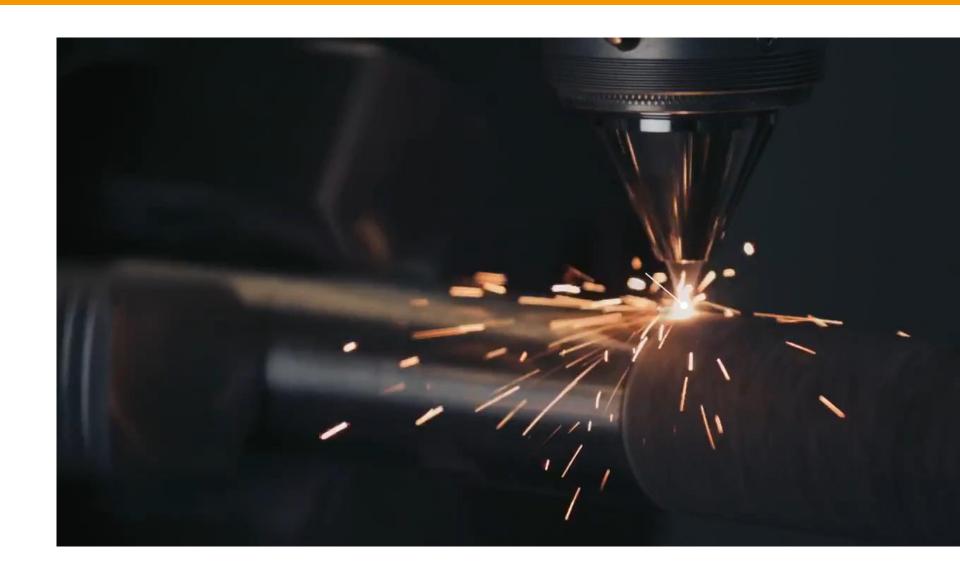
超高速激光熔覆服务——行业应用

针对零件表面耐磨、耐腐蚀、耐高温及抗氧化等性能需求,可制备铁基、镍基、钴基、复合材料等多种功能复合涂层,已在煤矿机械、工程机械、石油钻采、钢铁冶金等多个领域实现应用,未来将继续推广在航空航天、汽车制造等多个行业应用。



超高速激光熔覆服务——服务优势

效率高

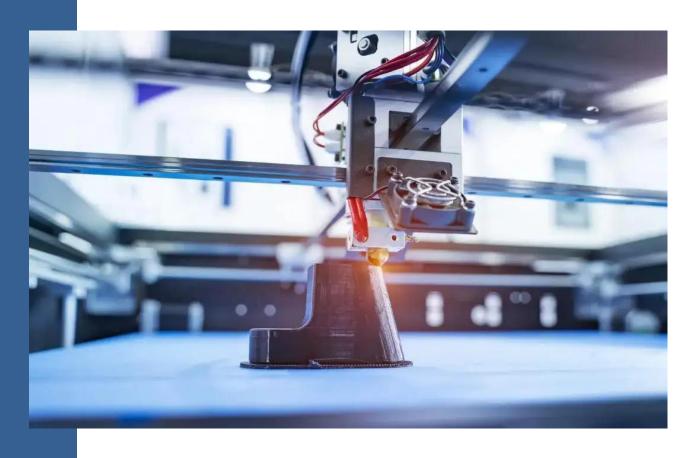

- 熔覆线速率20~200 m/min
- 熔覆效率0.5~3m²/h

质量高

- 完全冶金结合
- o 熔覆层厚50~800μm
- 热输入低,热影响区 < 100μm
- 熔覆层稀释率 < 1%

成本节省

- 低功率
- 粉末利用率高达90%
- 熔覆层表面粗糙度Ra < 10μm,后续无需车削加工,可直接磨削



业务四 3D打印服务

3D打印中心是面向金属3D打印应用的最前沿科技创新机构。 拥有国际先进的微尺度SLM金属3D打印机、常规尺度SLM 金属3D打印机。公司设备可打印镍基合金、钛合金、不锈钢、 模具钢、工具钢等多种材料,致力于解决高精度金属3D打印 的相关需求。

拥有各类金属3D打印设备7台,涵盖微米级SLM 3D打印与常规SLM 3D 打印,零部件成形尺寸最大可达400*400*400mm。

3D打印服务——常规3D打印 (SLM)

微米级3D打印 (Micro-SLM) 设备

微米级3D打印设备

● 激光器类型: 200W光纤激光器

● 光斑尺寸: 20-25 µ m

● 定位精度: 1 µ m

● 粉末粒径: <20 µ m

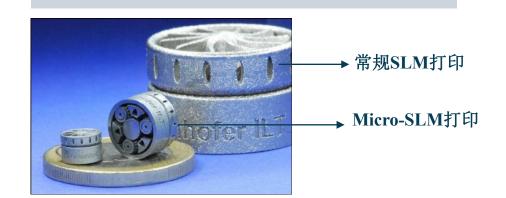
● 成形尺寸: Φ100×150 mm

● 适用材料: 不锈钢、钛合金、高温合金、记忆合金、贵金属

针对航空航天、精密机械、集成电路等行业高精密3D打印需求,开展了微米级3D打印工艺技术及装备研发; 开发了微米级超高精度激光3D打印装备;攻克了关键工艺技术并实现了成形精度<20μm、表面粗糙度Ra< 1μm,成形精度较现有增材制造工艺大幅提升。

常规SLM

粉末粒度范围: 15-53 μm


典型铺粉层厚: 20-50 μm

• 成型精度: 100-200 μm

• 表面粗糙度: Rz 40-100 μm

Ra 约10 μm

• 需大量支撑结构

Micro-SLM

粉末粒度范围: 0-20 μm

典型铺粉层厚: 5-10 μm

· 成型精度: <20 μm

· 表面粗糙度: Rz 5-10 μm

Ra 约1 μm

• 可实现10°以上无支撑3D打印

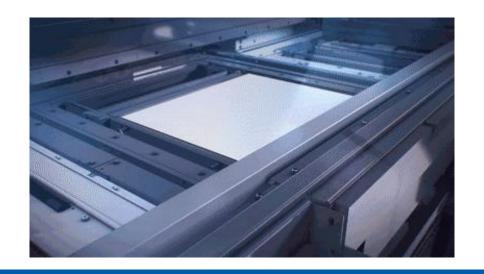
Micro-SLM打印结 构与蒲公英对比

尺寸约10 mm

先进激光加工技术——微米级3D打印

超细金属粉末的均匀铺粉技术

通过特殊的铺粉技术,可实现对0-20 μm超细金属粉末的均匀铺粉,可确 保良好的铺粉平整度。


激光光斑精密整形聚焦技术

通过开发激光光斑整形系统,聚焦光斑尺寸可达20 μm,保证了微米级3D 打印的超高打印精度。

激光点能精确控制技术

打印技术不同于常规3D打印的连续激光加工,微米级3D采用脉冲激光,实现对打印过程中激光点能的精确控制,可实现复杂结构的无支撑打印。

微米级3D打印应用领域

航空航天行业

可一次性成形具有高表面光洁度和复杂 内部结构的镍基高温合金航空发动机部 件,大幅提高其使用性能。

医疗行业

可直接成形微创手术器材,实现可活动铰链结构,免除精密加床加工和后期多重组装,还可快速制造个性化植入体。

微电子行业

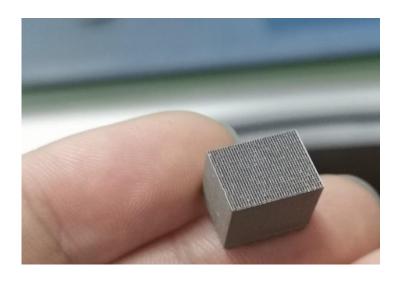
直接打印优化后的散热片结构。同时打印封闭式的 微结构管道,实现传统工艺无法加工的微米级复杂 部件,提高产品散热性能。

模具行业

可直接制造微米级电子接插件模具,从而实现快速经济的批量生产。并可以实现随形冷却流道系统,提高冷却效率,延长设备使用寿命并提升设备产能。

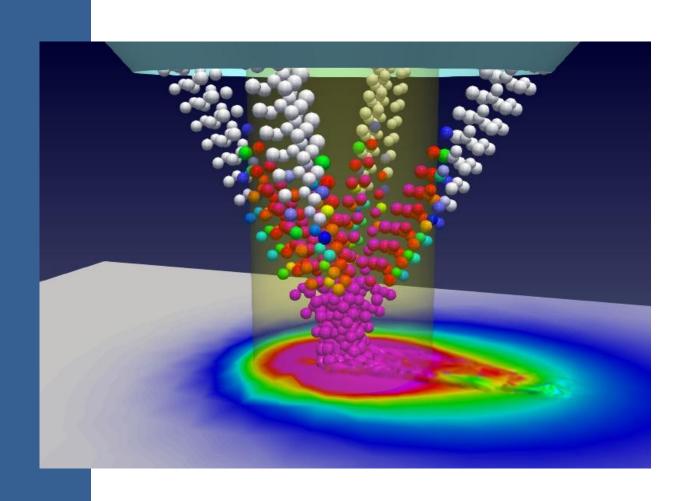
尖端测量技术行业

多孔流体力学探测器内部结构复杂,制造 困难,且尺寸普遍偏大。微米级打印可以 直接打印多孔多流道、微型、高精度探测 装置,并具有超高表面光洁度,无需后期 处理,可直接使用。


饰品行业

可打印18K黄金粉末,成形精细复杂结构,打印产品表面光洁度高。同时,在打印过程中大量减少支撑件的使用,减少后期加工工序,节约贵金属粉末,降低加工成本。

微米级3D打印应用案例

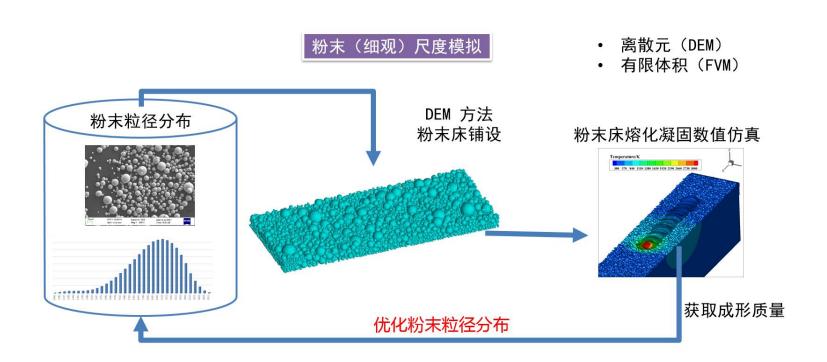


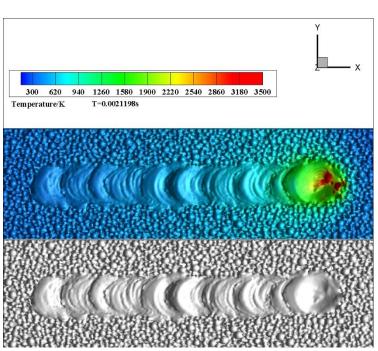
业务五 数字化模拟仿真技术服务

针对3D打印增材制造、高速激光熔覆等技术开发建模与模拟仿真软件,对制造工艺、产品使用性能、寿命等进行全流程数值模拟与仿真,建立面向重点行业的设计制造虚拟数字服务平台。

数字化模拟仿真技术服务——服务项目

激光增材制造工艺与 关键系统仿真及开发 气雾化制粉工艺与关 键系统仿真及开发


高能束焊接温度场与 应力场仿真分析


热挤压成形及模具应 力分析 其他结构、流体、传热 等典型问题仿真分析

数字化模拟仿真技术服务——案例展示

1、粉末尺度激光选区熔化仿真服务

感谢您的聆听!

中机新材料研究院 (郑州) 有限公司

电话: 0371-55287790

邮箱: camtczz@163.com

地址:河南省郑州市高新区化工路与香蒲路交叉口向北100米路西