

无卤阻燃聚苯乙烯泡沫材料改性成型技术

张胜, 18610021239

2022.08.11

目录

Contents

- 01 背景介绍
- 02 研究内容
 - > 高效无卤纳米材料阻燃EPS
 - ➤ 低甲醛生物基阻燃EPS
 - > 专用环保阻燃XPS体系开发
 - > 环保阻燃XPS发泡及其流变学研究

03 总结致谢

聚苯乙烯泡沫材料

EPS板材-间歇发泡

XPS板材-连续挤出发泡

优点:

- ✓ 保温效果好
- ✓ 密度低, 质轻
- ✓ 优良的抗水性
- ✓ 缓冲性能优异
- √ 价格优势

应用范围

保温,缓冲

家电、建筑、交通、包装等

缺点:

碳氢化合物,极限氧指数 仅为18.0%,极易燃烧

研究内容和成果

第一部分 EPS无卤阻燃技术

EPS阻燃材料开发现状

阻燃EPS存在问题

- × 燃烧生成大量有毒烟气
- **×** 阻燃剂影响力学
- × 甲醛含量较高
- **×** 阻燃剂添加量过大

引入纳米材料,提高阻燃效率, ________减少阻燃剂用量

MWNT MMT MoS₂ EG

开发低甲醛生物基阻燃胶

淀粉

SPC阻燃胶

EPS常用阻燃方法

聚合阻燃

➤ 在PS合成阶段嵌 入阻燃片段

> 反应条件严苛

浸渍阻燃

发泡剂混合阻燃浸渍液浸入珠粒

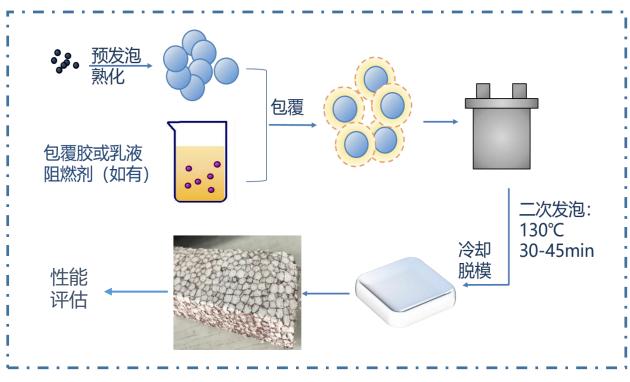
> 阻燃剂粒径受限

涂层阻燃

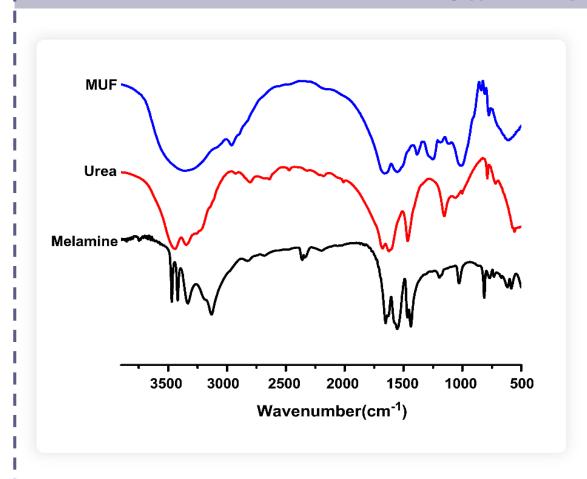
》 阻燃剂涂敷于成型泡沫板表面

> 涂层易剥落

包覆阻燃

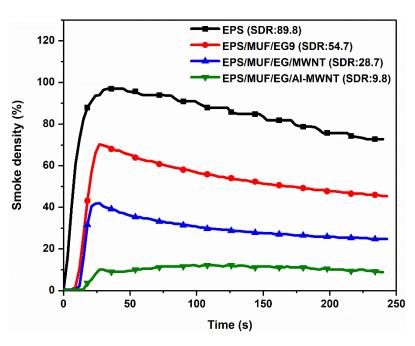

阻燃剂、胶黏剂包 覆于预发泡珠粒,后续二次发泡

> 常用,种类宽泛

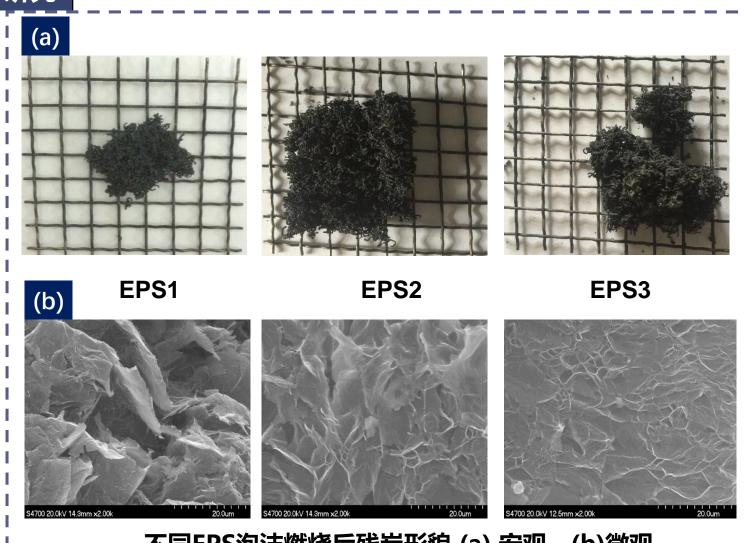

EPS包覆阻燃工艺探索

低甲醛MUF树脂的合成及表征

红外分析

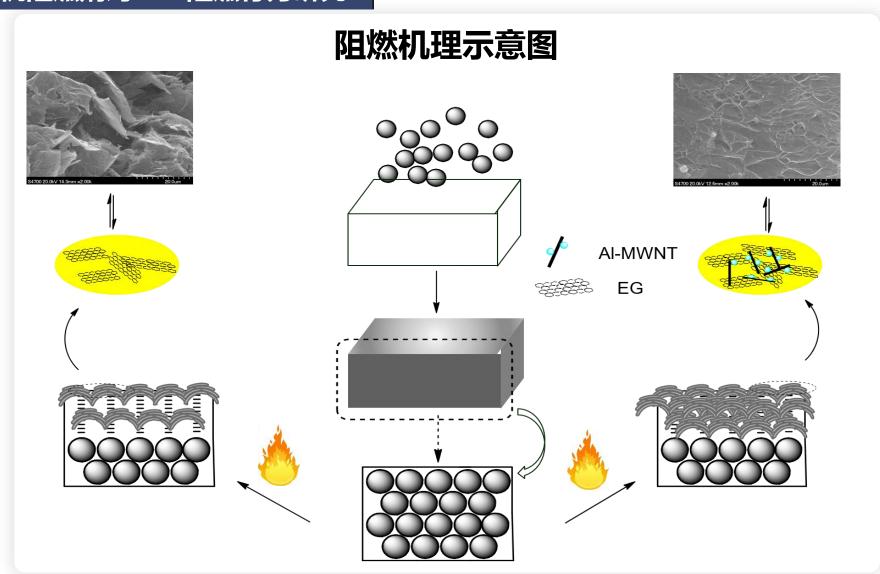

树脂	游离甲醛含量 (%)	固含量 (%)	
UF	1.43	62.3	
MUF	0.15	66.2	

02 研究内容——高效无卤纳米材料阻燃EPS



改性无机阻燃剂对EPS阻燃行为研究

不同EPS泡沫的烟密度曲线


不同EPS泡沫燃烧后残炭形貌 (a) 宏观, (b)微观

02 研究内容——高效无卤纳米材料阻燃EPS

改性无机阻燃剂对EPS阻燃行为研究

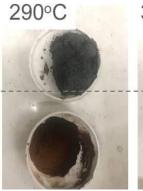
02 研究内容——低甲醛生物基阻燃EPS

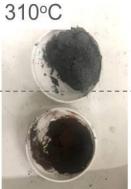
磷酸酯阻燃胶的合成及表征

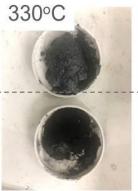
TG测试

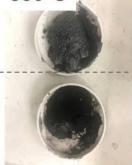
Samples	1	2	3
T _{max} (°C)	206.0	331.9	272.7
Residue (%)	0.26	12.78	22.01

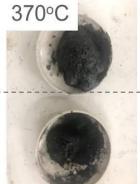
马弗炉高温灼烧测试

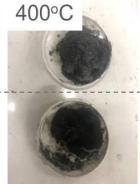




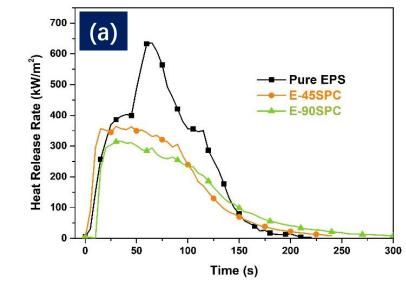


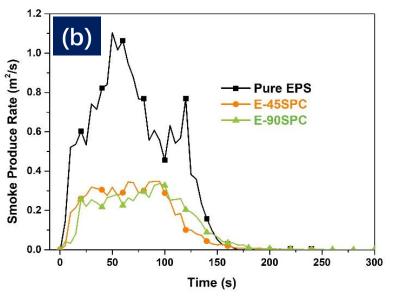

SPC


淀粉



02 研究内容——低甲醛生物基阻燃EPS





阻燃胶阻燃行为表征

Camples	EPS (phr)	SPC (phr)	LOI (%)	UL-94	
Samples				t ₁ /t ₂ (s)	Rating
Pure EPS	100	0	17.6±0.2	-	NR
E-45SPC	100	45	28.0±0.2	1.4/3.4	V-0
E-90SPC	100	90	35.2±0.4	0/0	V-0

热释放速率(a)与总生烟速率曲线(b)

合成低游离醛含量树脂,氧指数最高达到32.6%

低甲醛

2

金属元素和无机改性阻燃剂复合,形成较为完整质密的炭层。

3

成功制备无甲醛磷酸酯<mark>阻燃胶</mark>,EPS/SPC样品良好阻燃性。

无甲醛

第二部分 XPS无卤阻燃技术

替

XPS阻燃材料开发现状

六溴环十二 烷 代

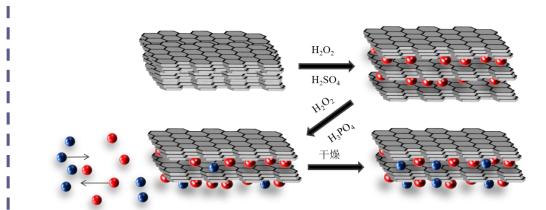
《斯德哥尔摩公约》

中国豁免期至2021

环保?健康?

年12月

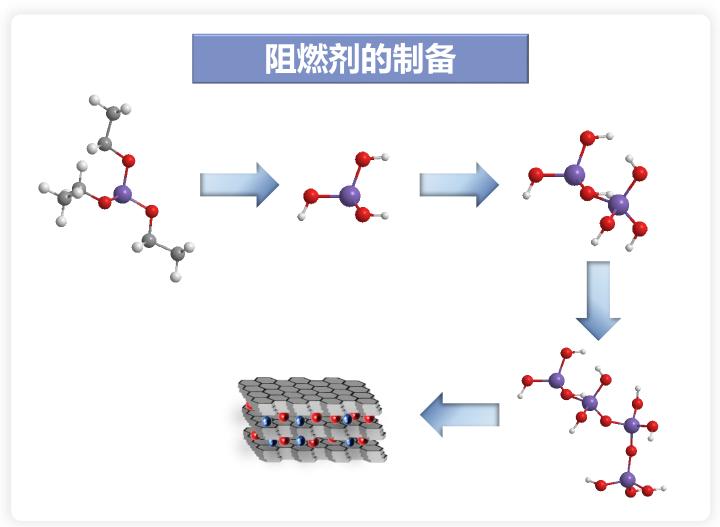
甲基八溴醚

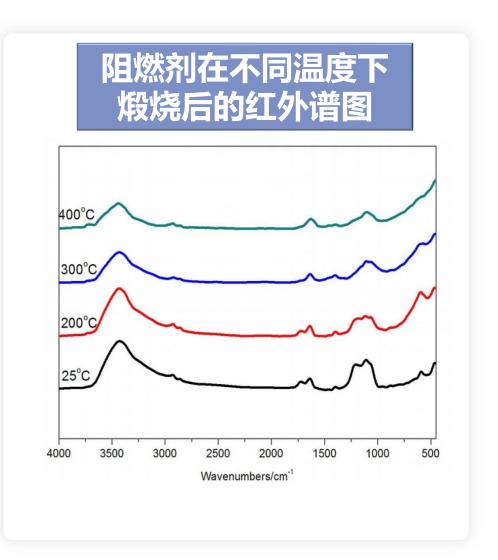

溴化聚苯

技术 难点 XPS板材加工温度: 180~240℃

无卤阻燃剂加入影响发泡工艺

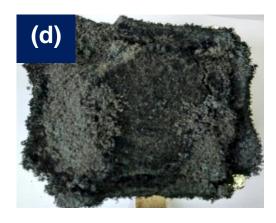
1、XPS的无卤阻燃体系


2、应用于超临界CO₂发泡,研究流变性能,实现小 试, 计划之后放大生产。

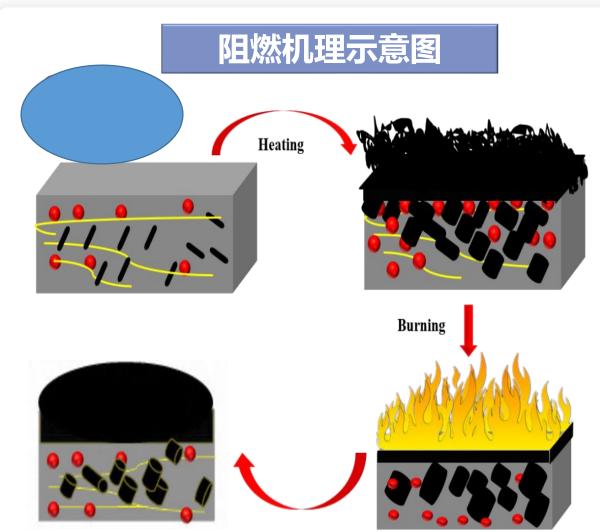


有机无机复合阻燃剂的制备及表征

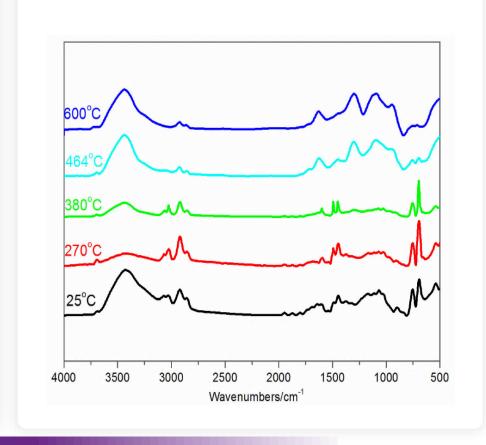



PS最佳阻燃配方选择

锥量测试后残炭照片



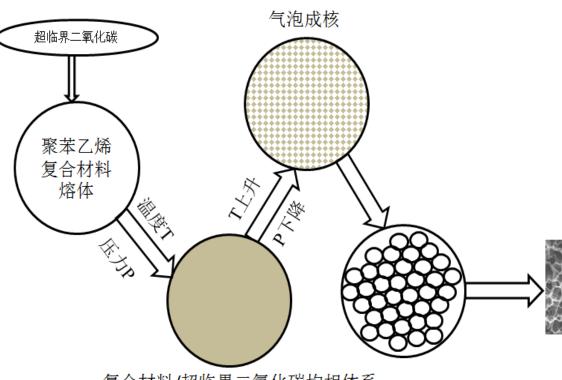
02 研究内容——专用环保阻燃XPS体系开发

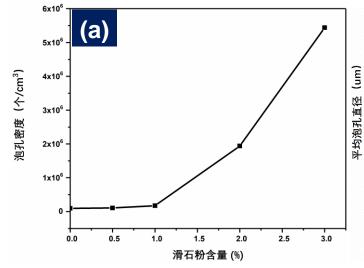


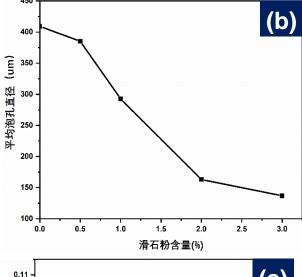
阻燃机理探究

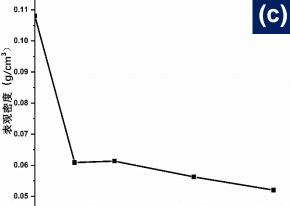
复合材料在不同温度 下煅烧后的红外谱图

02 研究内容——环保阻燃XPS超临界CO。发泡及其流变学研究





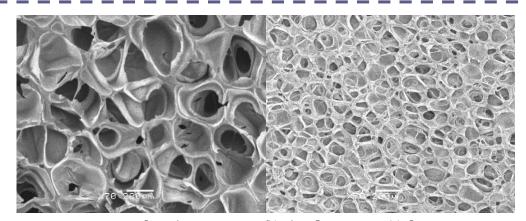

XPS发泡原理


传统成核剂对泡孔性能影响

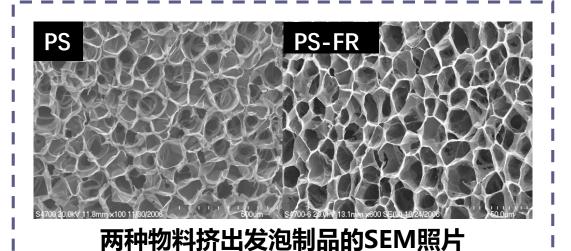
阻燃聚苯乙烯挤塑发泡原理示意图

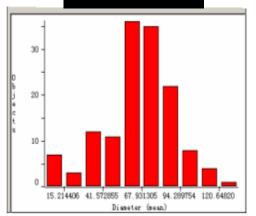
滑石粉含量(%)

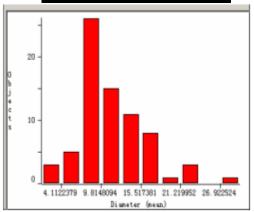
2.5

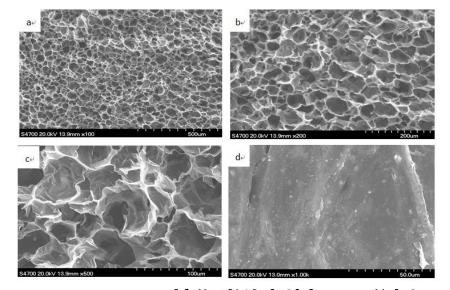

复合材料/超临界二氧化碳均相体系

02 研究内容——环保阻燃XPS超临界CO。发泡及其流变学研究




PS超临界CO2发泡研究

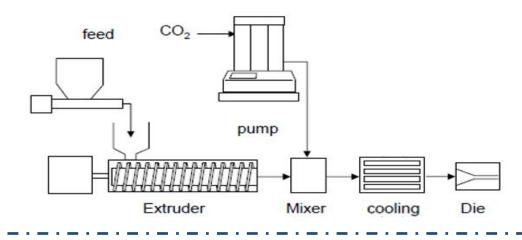

PS超临界CO₂发泡中SEM分析


PS发泡制品

PS-FR发泡制品

发泡制品的孔径分布图 (机头压力: 17MPa)

PS-FR挤塑发泡板材SEM分析


02 研究内容——环保阻燃XPS超临界CO₂发泡及其流变学研究

PS超临界CO₂发泡研究

PS发泡工艺 流程示意图

		CO ₂ 0wt%	CO ₂ 5wt%	CO ₂ 10wt%	CO ₂ 15wt%	
165°C	n		0.23	0.23	0.22	
	η_0		9571.16	8579.3	8270	
170°C	n	0.2	0.22	0.245	0.27	
	η_0	10827.4	9026.87	7339.3	5929	
180°C	n		0.24	0.26	0.25	
	η_0		7198	6281.2	5675	_

小试阶段产品样图

小试XPS板材

XPS阻燃体系小结

1

成功设计了无卤阻燃XPS保温板的配方和工艺

2

小试得到发泡板材各项性能指标优良

3

可实现中试和扩大化生产,设备投资100-200万,空间要求较大

4

技术国内外领先,环保安全,具有广阔的应用市场前景

感谢观看

